If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2-205t-10=0
a = 16; b = -205; c = -10;
Δ = b2-4ac
Δ = -2052-4·16·(-10)
Δ = 42665
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-205)-\sqrt{42665}}{2*16}=\frac{205-\sqrt{42665}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-205)+\sqrt{42665}}{2*16}=\frac{205+\sqrt{42665}}{32} $
| 7(4+6c)=32 | | 0=16t^2-205t-10 | | 6(x-7)=8x+22 | | z/6–7=-8 | | 12+4p=20 | | 24.75b=67,312+10.75b | | 3v2+36v+49=8v | | 5+4x-7=4x+3-4x | | -1/49x-8)-7=-0.25x-9+1/2x | | A=8x-8 | | 130x-50x=180 | | 2a–17=1 | | 11/2+b=7/4 | | 3/y=36 | | 18.75m=20 | | *6)6(x+2)=4x+22 | | 11x+10=4x+-11 | | x/236=3/4 | | 575=h+75h | | 1/2(x-6)=0.25x+3+0.25x | | -6b-54=9b+20 | | 4x+4=-4x-12 | | 0=x^2-160x+7375 | | 4/5n=180 | | 83=(21y-1) | | .5(x-6)=0.25x+3=0.25x | | 95=5a+42 | | 2x^2-10x+25=25 | | 2+4u=10 | | x^2-160x+7375=0 | | 71.8=(21y-1) | | Y^-12×+4y-32=0 |